Two‐Weight Codes and Second Order Recurrences
نویسندگان
چکیده
منابع مشابه
Two-weight codes and second order recurrences
Cyclic codes of dimension 2 over a finite field are shown to have at most two nonzero weights. This extends a construction of Rao et al (2010) and disproves a conjecture of Schmidt-White (2002). We compute their weight distribution, and give a condition on the roots of their check polynomials for them to be MDS.
متن کاملCoupled Second–order Recurrences
We give explicit solutions to two longstanding problems on coupled second–order recurrences.
متن کاملSecond-order Linear Recurrences of Composite Numbers
In a well-known result, Ronald Graham found a Fibonacci-like sequence whose two initial terms are relatively prime and which consists only of composite integers. We generalize this result to nondegenerate second-order recurrences.
متن کاملThe Generation of Higher-order Linear Recurrences from Second-order Linear Recurrences
Along the lines of this theorem, Selmer [1] has shown how one can form a higher-order linear recurrence consisting of the term-wise products of two other linear recurrences. In particular, let {sn} be an m-order and {tn} be a p-order linear integral recurrence with the associated polynomials s(x) and t(x), respectively. Let a^, i = 1,2, ..., m, and 3j, j = 1, 2, ..., p, be the roots of the poly...
متن کاملFactorizations and representations of the backward second-order linear recurrences
We show the relationships between the determinants and permanents of certain tridiagonal matrices and the negatively subscripted terms of second-order linear recurrences.Also considering how to the negatively subscripted terms of second-order linear recurrences can be connected to Chebyshev polynomials by determinants of these matrices, we give factorizations and representations of these number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Journal of Electronics
سال: 2019
ISSN: 1022-4653,2075-5597
DOI: 10.1049/cje.2019.07.001